
陶瓷电容用高介电常数的电容器陶瓷挤压成圆管、圆片或圆盘作为介质,并用烧渗法将银镀在陶瓷上作为电极制成。具有小的正电容温度系数的电容器,用于高稳定振荡回路中,作为回路电容器及垫整电容器。而陶瓷电容使用在不合适的电路中很容易失效。


压敏电阻是一种限压型保护器件,利用压敏电阻的非线性特性,当过电压出现在其两极时,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。压敏电阻还有一个很重要的作用,就是用于电路中的瞬态过电压保护。虽然它的通流容量大,但是能量容量却不大。此外,因为它的冲击电流脉冲宽度远远小于大中功率半导体系统实际脉冲电流宽度,所以才会时常发生短路或烧坏及失效现象。


FMEA的定义:FMEA是一种使用自下而上(Bottom-Up)方法的定量分析(Quantitative Analysis)。它可以在设计或过程中执行。它识别设计或过程的弱点。它从产品或过程的低级(组件级)开始,直至系统或子系统失效。它会突出显示系统或子系统的关键特性。FMEA的主要目的是识别系统或产品早期设计过程中可能影响其安全和性能的潜在问题,并引入对策以减轻或最小化已识别潜在问题(故障模式)的影响。


MOS管做为电压驱动大电流型器件,在电路尤其是动力系统中大量应用,MOS管有一些特性在实际应用中是我们应该特别注意的。


电子设备中使用着大量各种类型的电子元器件,设备发生故障大多是由于电子元器件失效或损坏引起的。失效分析在产品的可靠性质量保证和提高中发挥着重要作用,在产品的研发、生产、使用中都需要引入失效分析工作。下面是部分常见电子元器件失效检测整理的相关内容,供大家参考。


失效分析是一门新兴发展的学科,在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。全面系统的失效分析可以确定失效的原因,对于器件设计、制造工艺、试验或应用的改进具有指导作用,采取相应的纠正措施消除失效模式或机理产生的原因,从而实现器件以及装备整体可靠性的提高。


电子元器件的主要失效模式包括但不限于开路、短路、烧毁、爆炸、漏电、功能失效、电参数漂移、非稳定失效等。失效可能发生在产品寿命周期的各个阶段,发生在产品研制阶段、生产阶段到使用阶段的各个环节,通过分析工艺废次品、早期失效、试验失效、中试失效以及现场失效的失效产品明确失效模式、分析失效机理,最终明确失效原因。


随着集成电路技术的不断发展,其芯片的特征尺寸变得越来越小,器件的结构越来越复杂,与之相应的芯片工艺诊断、失效分析、器件微细加工也变得越来越困难,传统的分析手段已经难以满足集成电路器件向深亚微米级、纳米级技术发展的需要。


金属材料的失效形式及失效原因密切相关,失效形式是材料失效过程的表观特征,可以通过适当的方式进行观察。而失效原因是导致构件失效的物理化学机制,需要通过失效过程调研研究及对失效件的宏观、微观分析来诊断和论证。


由于现代社会科技化程度的不断提高,电子器件的使用范围不断扩大,电子器件在我们的生活和工作中随处可见。由于电子器件应用范围的广泛,电子器件的失效现象也是多种多样,随处可见。电应力失效作为电子器件失效的重要方面,电气器件电应力失效的分析与研究,对电子器件的生产、使用和研发等具有深远的意义。

